skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Jingyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The circumgalactic medium (CGM) of star-forming dwarf galaxies plays a key role in regulating the galactic baryonic cycle. We investigate how susceptible the CGM of dwarf satellite galaxies is to ram pressure stripping in Milky Way–like environments. In a suite of hydrodynamical wind tunnel simulations, we model an intermediate-mass dwarf satellite galaxy (M*= 107.2M) with a multiphase interstellar medium (ISM;MISM= 107.9M) and CGM (MCGM,vir= 108.5M) along two first-infall orbits to more than 500 Myr past pericenter of a Milky Way–like host. The spatial resolution is ∼79 pc in the star-forming ISM and 316−632 pc in the CGM. Our simulations show that the dwarf satellite CGM removal is fast and effective: more than 95% of the CGM mass is ram pressure stripped within a few hundred megayears, even under a weak ram pressure orbit where the ISM stripping is negligible. The conditions for CGM survival are consistent with the analytical halo gas stripping predictions in McCarthy et al. We also find that including the satellite CGM does not effectively shield its galaxy, and therefore the ISM stripping rate is unaffected. Our results imply that a dwarf galaxy CGM is unlikely to be detected in satellite galaxies; and that the star formation of gaseous dwarf satellites is likely devoid of replenishment from a CGM. 
    more » « less
  2. Abstract We investigate how a satellite's star formation rate (SFR) and surviving gas respond to ram pressure stripping (RPS) in various environments. Using a suite of high-resolutionwind tunnelsimulations with radiative cooling, star formation, and supernovae feedback, we model the first infall orbit of a low-mass disk galaxy (M*= 109.7M) in different host halos, ranging from Milky Way–like to cluster hosts. When the ram pressure is moderate, we find that the stripping satellite shows an enhanced SFR relative to the isolated control case, despite gas loss due to stripping. The SFR enhancement is caused, not directly by compression, but by ram-pressure-driven mass flows, which can increase the dense gas fraction in the central disk regions. The spatially resolved star formation main sequence and Kennicutt–Schmidt relations in our simulations are consistent with recent findings of the VERTICO and GASP surveys. Our results predict the environmental signals of RPS in future multiwavelength, high-angular resolution observations: the star formation and gas surface densities will be centralized, and symmetrically enhanced within the stripping radius. 
    more » « less